Зрение будущего: искусственные глаза, сетчатка и импланты в мозге . Искусственная сетчатка Как выглядят магнитные волны

МОСКВА, 13 мая - РИА Новости. Американские биотехнологи создали прототип искусственной сетчатки глаза, который не требует системы питания, и работает на энергии инфракрасного излучения, говорится в статье, опубликованной в журнале Nature Photonics.

На сегодняшний день ученые во всем мире разрабатывают несколько видов имплантатов, в теории способных вернуть зрение, утерянное в результате дегенеративных болезней или происшествий. В одних случаях биологи экспериментируют со стволовыми клетками или отдельными клетками сетчатки, в других - физики и биотехнологи пытаются приспособить различные электронные приборы к работе с мозгом человека и животных. Но до сих пор ни в одном исследовании не было достигнуто существенных успехов.

Кибер-глаз

Группа ученых под руководством Джеймса Лаудина (James Loudin) из Стэнфордского университета (США) разработала новый тип электронной сетчатки глаза, пригодной для получения изображения высокой четкости и не требующей внешнего источника питания - основного препятствия на пути развития подобных технологий.

"Наше изобретение работает примерно так же, как солнечные батареи на крыше дома, преобразуя свет в электрические импульсы. Однако в нашем случае электричество питает не "холодильник", а направляется в сетчатку в качестве сигнала", - пояснил один из участников группы Дэниел Паланкер (Daniel Palanker).

Искусственная сетчатка глаза Лаудина и его коллег представляет собой набор из множества микроскопических единичных кремниевых пластинок, объединяющих в себе светочувствительный элемент, генератор электричества, а также некоторые другие элементы. Для работы этой сетчатки необходимы специальные очки со встроенной видеокамерой и карманный компьютер, обрабатывающий изображение.

Данное устройство работает следующим образом: камера в очках непрерывно преобразует свет в порции электронных импульсов. Каждый "кадр" обрабатывается на компьютере, делится на две половинки - для правого и левого глаза и передается в инфракрасные излучатели на обратной стороне линз очков. Очки испускают короткие импульсы инфракрасного излучения, которое активирует фотодатчики на сетчатке глаза и заставляет их передавать электрические импульсы, кодирующие картинку, в оптические нейроны.

"Современные имплантаты очень громоздкие, и операции по вставке всех необходимых компонентов в глаз невероятно сложны. В нашем случае хирург должен сделать лишь один небольшой надрез на сетчатке и погрузить под нее фоточувствительный компонент устройства", - продолжил Паланкер.

Инфракрасное прозрение

По словам ученых, использование инфракрасного света для передачи информации обладает двумя ключевыми преимуществами. Во-первых, он позволяет наращивать мощность импульса до очень высоких значений, не вызывая боль в живых клетках сетчатки, так как светочувствительные клетки не реагируют на инфракрасное излучение. Во-вторых, высокая мощность излучения улучшает четкость изображения в тех случаях, когда нейроны под сетчаткой сильно повреждены или слабо реагируют на электрические импульсы.

Ученые проверили работу своего изобретения на сетчатках глаза и нервной ткани, взятых у зрячих и у слепых крыс. В этом эксперименте они прикрепляли фотоэлементы к небольшим кусочкам сетчатки, подключали электроды к прилегающим к ней нейронам и следили, начинают ли они испускать импульсы при облучении видимым и инфракрасным светом.

Американские ученые изучали нейронный код клеток сетчатки у мышей. В результате были полученные данные, которые использовали при создании искусственного глаза. Это устройство потенциально может восстановить зрения слепым мышам. Другие ученые таким же образом изучали код сетчатки у обезьян. Оказалось, что структура и нейронная активность ее во многом схожа с человеческой. Авторы этих работ считают, что эти исследования помогут создать устройство, которое после тестирования поможет слепым людям вновь обрести зрение.

Важно отметить, что по задумке исследователей, искусственная сетчатка поможет видеть не только контуры предметов, но способна даже восстановить зрительную функцию в полном объеме. То есть ранее слепой пациент сможет различать мелкие детали, например, черты лица собеседника. В настоящий момент исследование находится на стадии апробации на животных, которые могут различать движущиеся предметы.

Основной задачей ученых на этом этапе является создание очков или устройства в виде обруча, при помощи которых внешний свет будет собираться и преобразовываться в специфический электронный код. Далее этот код в центральных структурах мозга будет трансформироваться в изображение.

Заболевания сетчатки стоят на первом месте среди причин слепоты. Однако, даже при повреждении всех фоторецепторных клеток, зрительный нерв обычно не повреждается, то есть сохранен нервный выходной путь глазного яблока. Современные протезы применяют этот факт. При этом в глаз слепого человека имплантируют специальные электроды. Они стимулируют ганглиозные нервные клетки. Но при этом можно получить только расплывчатую картинку, то есть человек воспринимает очертания предметов.

Еще одним альтернативным методом лечения слепоты является стимуляция клеток посредством светочувствительных белков. Их вводят в сетчатку глазного яблока с применением методов генной терапии. При попадании в сетчатки, эти белки стимулируют одновременно большое количество ганглиозных клеток.

Однако, для формирования четкого изображения, необходимо установить код сетчатки, то есть тот путь преобразования света в электрический импульс, который использует природа. В противном случае сформированные импульсы будут непонятны нейронам мозга и построение четкого изображения станет невозможным.

Сначала ученые пытали получить этот код, используя простые предметы, к которым относят, например, геометрические фигуры. Доктор неврологии Шейла Ниренберг предположила, что код сетчатки должен быть однотипным как для построения простых геометрических фигур, так и для создания более сложных картин (человеческие лица, пейзажи). Во время работы над этой теорией Ш. Ниренберг поняла, что гипотеза однотипности подходит для протезирования сетчатки. Она провела простой эксперимент, во время которого мини-проектор, которым управлял расшифрованный код, посылал электрические импульсы в ганглиозные клетки мышей. В эти клетки при помощи методик генной инженерии предварительно были встроены светочувствительные белки.

При анализе результатов, которые получены в серии экспериментов, было установлено, что качество зрения мыши, которой был имплантирован этот проектор, ничем не отличается от зрительной функции здорового грызуна.

Эта инновационная технология дает надежду огромному количеству пациентов с нарушением зрения. В связи с тем, что лекарственная терапия помогает лишь небольшой части ослепших людей, протез сетчатки будет очень востребован в клинической практике.

28 Апреля 2015

Исследователи медицинской школы Стэндфордского университета, работающие под руководством профессора Даниэля Паланкера (Daniel Palanker), разработали беспроводной сетчаточный имплантат, который в будущем позволит восстанавливать зрение в пять лучше, чем существующие устройства. Результаты исследований на крысах свидетельствуют о способности нового устройства обеспечивать функциональное зрение пациентам с дегенеративными заболеваниями сетчатки, такими как пигментная дистрофия сетчатки и макулярная дегенерация.

Дегенеративные заболевания сетчатки приводят к разрушению фоторецепторов – так называемых палочек и колбочек, – тогда как остальные части глаза, как правило, сохраняются в хорошем состоянии. Новый имплантат использует электрическую возбудимость одной из популяций сетчаточных нейронов, известных как биполярные клетки. Эти клетки обрабатывают поступающие с фоторецепторов сигналы до того, как они достигают ганглионарных клеток, отправляющих зрительную информацию в головной мозг. Стимулируя биполярные клетки, имплантат пользуется важными естественными свойствами нейронной системы сетчатки, что обеспечивает получение более детализованных изображений, по сравнению с устройствами, не воздействующими на эти клетки.

Изготавливаемый из оксида кремния имплантат состоит из шестиугольных фотоэлектрических пикселей, конвертирующих световое излучение, испускаемое надеваемыми на глаза пациента специальными очками, в электрический ток. Эти электрические импульсы стимулируют биполярные клетки сетчатки, запуская достигающий головного мозга нейронный каскад.

назад

Читать также:

06 Апреля 2015

Как выглядят магнитные волны?

Чип твердотельного компаса, передающий сигналы в области коры головного мозга слепой крысы, отвечающие за обработку визуальной информации, позволил животному «видеть» геомагнитные поля.

читать 20 Июня 2013

Беспроводной протез сетчатки

Биотехнологи из Стэнфордского университета успешно пересадили в глаза крыс протезы сетчатки, которые обходятся без источника питания и требуют минимального хирургического вмешательства для имплантации.

читать 22 Февраля 2013

Электронные сетчатки совершенствуются

Беспроводная бионическая сетчатка Alpha IMS работает без внешней камеры, обеспечивая свободное движение глаз, и подаёт сигналы от 1500 пикселей на близлежащие нейронные слои сетчатки и на зрительный нерв, полностью имитируя работу клеток-фоторецепторов.

читать 18 Февраля 2013

Первая электронная сетчатка выходит на рынок США

FDA одобрило первую искусственную сетчатку – имплантируемое устройство с некоторыми функциями сетчатки, которое поможет людям, потерявшим зрение вследствие генетического заболевания – пигментного ретинита.

читать 14 Мая 2012

Оптоэлектронная сетчатка без батареек

Для создания искусственной сетчатки ученые решили использовать фотоэлементы, активируемые инфракрасным лучом, что позволило совместить передачу визуальной информации с передачей энергии и упростить устройство имплантата.

Немецкие ученые разработали имплантируемую искусственную сетчатку глаза.

В эксперименте она частично вернула трем пациентам, ослепшим в результате наследственной дистрофии сетчатки, пишет The Daily Telegraph.

Предыдущие устройства с подобным предназначением представляли собой камеру и процессор, которые нужно носить наподобие очков. Бионический имплантат, разработанный фирмой Retinal Implant AG совместно с Институтом офтальмологических исследований при Университете Тюбингена, вживляется прямо под сетчатку и использует оптический аппарат глаза. Таким образом, он является непосредственной заменой утраченных световых рецепторов.

Получаемое с помощью бионической сетчатки черно-белое изображение стабильно и соответствует движениям глазного яблока.

Трое пациентов, принявших участие в испытаниях прибора, через несколько дней после операции смогли различать формы объектов. У одного из них зрение улучшилось настолько, что он начал свободно ходить по помещению, подходить к людям, видеть стрелки часов и различать семь оттенков серого цвета.

По словам профессора Эберхарта Цреннера (Eberhart Zrenner), возглавляющего Глазную больницу Университета Тюбингена, пилотные испытания убедительно доказали, что имплантат способен восстановить зрение людей с дистрофией сетчатки в достаточном для повседневной жизни объеме. Правда, отметил он, внедрение устройства в клиническую практику займет немало времени.

Бионическую сетчатку, по мнению ученых, можно будет применять при слепоте, вызванной пигментным ретинитом и другими дистрофическими заболеваниями сетчатки.

Биологические сенсорные системы компактны и эффективно расходуют энергию. При попытке создания полупроводниковый аналог сетчатки, сталкиваются с большими трудностями: при толщине 0,5 мм она весит 0,5 г и потребляет 0,1 Вт.

Рис. 8.

Биологическая сетчатка.

Клетки сетчатки связаны сложной сетью возбуждающих (односторонние стрелки), подавляющих (линии с кружками на конце) и двунаправленных (двусторонние стрелки) сигнальных связей. Такая схема вырабатывает селективные ответы четырех типов ганглионарных клеток (внизу), которые составляют 90% волокон зрительного нерва, передающих зрительную информацию в мозг. Ганглионарные клетки включения "Вкл." (зеленые) и выключения "Выкл." (красные) возбуждаются, когда локальная интенсивность света выше или ниже, чем на окружающем участке. Ганглионарные клетки возрастания "Инк." (синие) и убывания "Дек." (желтые) генерируют импульсы, когда интенсивность света увеличивается или уменьшается.


Рис. 8.

Кремниевая сетчатка

В электронных моделях сетчатки аксоны и дендриты каждой клетки (сигнальные связи) заменяются металлическими проводниками, а синапсы - транзисторами. Перестановки такой конфигурации создают возбуждающие и запрещающие взаимодействия, которые имитируют связи между нейронами. Транзисторы и соединяющие их проводники располагаются на кремниевых чипах, различные участки которых играют роль различных слоев клеток. Большие зеленые площадки - фототранзисторы, преобразующие свет в электрические сигналы.

На ранней стадии развития глаза ганглионарные клетки сетчатки направляют свои аксоны в тектум, сенсорный центр среднего мозга. Аксоны сетчатки направляются с помощью следов химических соединений, выделяемых соседними клетками тектума, которые активируются одновременно; в результате нейроны, возбуждающиеся одновременно, связываются. В итоге в среднем мозге формируется карта пространственного расположения сенсоров сетчатки.

Чтобы смоделировать этот процесс, используют программируемые проводники для создания самоорганизующихся связей между клетками в чипе сетчатки Visio1 (вверху) и чипе искусственного тектума Neurotrope1 (внизу). Электрические выходные импульсы направляются от искусственных ганглионарных клеток к клеткам тектума через микросхему памяти (ОЗУ) (в середине). Чип сетчатки выдает адрес возбужденного нейрона, а чип тектума воспроизводит импульс возбуждения в соответствующем месте. В нашем примере искусственный тектум дает команду ОЗУ поменять местами адреса 1 и 2. В результате окончание аксона ганглионарной клетки 2 перемещается к клетке тектума 1, вытесняя аксон ганглионарной клетки 3. Аксоны реагируют на градиент электрического заряда, освобожденного возбужденной клеткой и помогающего перенаправить соединения.

После многократного возбуждения блоков соседствующих нейронов искусственной сетчатки (выделенные треугольники вверху слева) конечные точки аксонов клеток тектума, которые вначале были разбросаны (выделенные треугольники внизу слева), сближаются и образуют более однородные полосы (внизу справа).

Рис. 9.

Искусственные сетчатки "Аргус" (Argus) были успешно вживлены шестерым слепым пациентам, позволив им вновь видеть свет и обнаруживать движение крупных ярких объектов.

Рис. 10.

Эта система объединяет крошечный электронный глазной имплантат с видеокамерой, установленной на тёмных очках. Решётка из 16 электродов в имплантате соединяется с сетчаткой, воздействуя на фоторецепторы. Сигнал, подаваемый на них, проходит длинный путь от камеры: через обрабатывающий процессор, затем -- по радиоканалу к приёмнику, расположенному за ухом, и далее -- по проводам, протянутым под кожей, к глазному имплантату. Система может работать только с пациентами, у которых ослаблены и повреждены фоторецепторы сетчатки, но здоров глазной нерв.

Предпринимаются попытки воспроизводить нейронные структуры и их функции. Это называют морфингом (отображением) нервных связей на кремниевые электронные цепи. Таким образом создаются нейроморфные микрочипы путем морфинга сетчатки - нервной ткани толщиной 0,5 мм, покрывающей заднюю стенку глаза. Сетчатка состоит из пяти специализированных слоев нервных клеток и выполняет предварительную обработку визуальных изображений (образов), извлекая полезную информацию, не обращаясь к мозгу и не расходуя его ресурсы.

Кремниевая сетчатка воспринимает движения головы человека. Четыре типа кремниевых ганглионарных клеток на чипе Visio1 имитируют реальные клетки сетчатки и выполняют предварительную обработку визуальной информации. Одни клетки реагируют на темные области (красные), другие - на светлые (зеленые). Третий и четвертый наборы клеток следят за передними (желтые) и задними (синие) границами объектов. Черно-белые изображения, получаемые при декодировании, демонстрируют то, что слепой человек мог бы видеть с помощью нейроморфного имплантата сетчатки.




Похожие статьи

  • Английский - часы, время

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • "Алхимия на бумаге": рецепты

    Doodle Alchemy или Алхимия на бумаге на Андроид — интересная головоломка с красивой графикой и эффектами. Узнайте как играть в эту удивительную игру, а также найдите комбинации элементов для прохождения игры Алхимия на бумаге. Игра...

  • Не запускается Batman: Arkham City (Batman: Аркхем Сити)?

    Если вы столкнулись с тем, что Batman: Arkham City тормозит, вылетает, Batman: Arkham City не запускается, Batman: Arkham City не устанавливается, в Batman: Arkham City не работает управление, нет звука, выскакивают ошибки, в Batman:...

  • Как отучить от игровых автоматов человека Как отучить играть в азартные игры

    Вместе с психотерапевтом московской клиники Rehab Family и специалистом в терапии игромании Романом Герасимовым «Рейтинг Букмекеров» проследил путь игромана в ставках на спорт – от формирования зависимости до обращения к врачу,...

  • Ребусы Занимательные ребусы головоломки загадки

    Игра "Загадки Ребусы Шарады": ответ к разделу "ЗАГАДКИ" Уровень 1 и 2 ● Не мышь, не птица - в лесу резвится, на деревьях живёт и орешки грызёт. ● Три глаза - три приказа, красный - самый опасный. Уровень 3 и 4 ● Две антенны на...

  • Сроки поступления средств на ЯД

    СКОЛЬКО ИДУТ ДЕНЬГИ НА СЧЕТ КАРТЫ СБЕРБАНКА Важные параметры платежных операций – сроки и тарифы зачисления денежных средств. Эти критерии прежде всего зависят от выбранного способа перевода. Какие условия перечисления денег между счетам