Интерфаза периоды и процессы происходящие здесь. Стадии (фазы) митоза. Проблемы в интерфазе

Промежуток времени между клеточными делениями называется интерфазой .

Некоторые цитологи выделяют два вида интерфаз: гетеросинтетическую и аутосинтетическую.

В период гетеросинтетеической интерфазы клетки работают на организм, выполняя свои функции составного компонента того или иного органа или такни. В период аутосинтетической интерфазы клетки готовятся к митозу или мейозу. В этой интерфазе выделяют три периода: пресинтетический – G 1 , синтетический – S, и постсинтетический – G 2 .

В S-периоде продолжается синтез белка и происходит репликация ДНК. В большинстве клеток этот период длится 8-12 часов.

В G 2 – периоде продолжается синтез РНК и белка (например, тубулина для построения микротрубочек веретена деления). Происходит накопление АТФ для энергетического обеспечения последующего митоза. Эта фаза длится 2-4- часа.

Кроме интерфазы, для характеристики временной организации клеток выделяют такие понятия, как жизненный цикл клеток, клеточный цикл и митотический цикл. Под жизненным циклом клетки понимают время жизни клетки с момента ее возникновения после деления материнской клетки и до конца ее собственного деления или же до гибели.

Клеточный цикл – это совокупность процессов, протекающих в аутосинтетическую интерфазу, и собственно митоз.

11. Митоз. Его сущность, фазы, биологическое значение. Амитоз.

МИТОЗ

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.



Рис.28 . Характеристика митоза и мейоза.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Рис.29. Амитоз.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

12. Мейоз. Стадии, биологическое значение.

МЕЙОЗ

Мейоз (греч. мейозис – уменьшение) имеет место на стадии созревания гамет. Благодаря мейозу из диплоидных незрелых половых клеток образуются гаплоидные гаметы: яйцеклетки и сперматозоиды. Мейоз включает в себя два деления: редукционное (уменьшительное) и эквационное (уравнительное), каждое из которых имеет те же фазы, что и митоз. Однако, несмотря на то, что клетки делятся два раза, удвоение наследственного материала происходит только один раз – перед редукционным делением - и отсутствует перед эквационным.

Цитогенетический результат мейоза (образование гаплоидных клеток и перекомбинация наследственного материала) происходит во время первого (редукционного) деления. Оно включает 4 фазы: профазу, метафазу, анафазу и телофазу.

Профаза I подразделяется на 5 стадий:
лептонемы, (стадия тонких нитей)
зигонемы
стадия пахинемы (толстых нитей)
стадии диплонемы
стадия диакинеза.

Рис.31. Мейоз. Процессы, происходящие при редукционном делении.

В стадии лептонемы происходит спирализация хромосом и их выявление в виде тонких нитей с утолщениями по длине. В стадии зигонемы продолжается компактизация хромосом, а гомологичные хромосомы сближаются попарно и конъюгируют: каждая точка одной хромосомы совмещается с соответствующей точкой гомологичной хромосомы (синапсис). Две рядом лежащие хромосомы образуют биваленты.

В пахинеме между хромосомами, составляющими бивалент, может происходить обмен гомологичными участками (кроссинговер). На этой стадии видно, что каждая конъюгирующая хромосома состоит из двух хроматид, а каждый бивалент – из четырех хроматид (тетрад).

Диплонема характеризуется, появлением сил отталкивания конъюгатов начиная от центромер, а затем и в других участках. Хромосомы остаются связанными между собой только в местах кроссинговера.

В стадии диакинеза (расхождение двойных нитей) парные хромосомы частично расходятся. Начинается формирование веретена деления.

В метафазе I пары хромосом (биваленты) выстраиваются по экватору веретена деления, образуя метафазную пластинку.

В анафазе I к полюсам расходятся двухроматидные гомологичные хромосомы, и на клеточных полюсах скапливается их гаплоидный набор. В телофазе 1 происходят цитотомия и восстановление структуры интерфазных ядер, каждое из которых содержит гаплоидное число хромосом, но диплоидное количество ДНК (1n2c). После редукционного деления клетки переходят в короткую интерфазу, во время которой не наступает период S, и начинается эквационное (2-е) деление. Оно протекает, как обычный митоз, в результате чего образуются половые клетки, содержащие гаплоидный набор однохроматидных хромосом (1n1c)

Рис.32 . Мейоз. Эквационное деление.

Таким образом, во время второго мейотического деления количество ДНК приводится в соответствие с количеством хромосом.

12.Гаметогенез: ово - и сперматогенез.
Размножение, или самовоспроизведение, является одной из важнейших характеристик природы и присуще живым организмам. Передача генетического материала от родителей к следующему поколению в процессе размножения обеспечивает непрерывность существования рода. Процесс размножения у человека начинается с момента проникновения мужской половой клетки в женскую половую клетку.

Гаметогенез – это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез).

Гаметогенез протекает в половых железах - сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки - яйцеклетки, а у мужчин - мужские половые клетки сперматозоиды.
Именно процесс гаметогенез (сперматогенез, овогенез) дает возможность мужчине и женщине возможность воспроизведения потомства.

Клеточный цикл.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание ее жизненного цикла (клеточного цикла). Клеточный цикл- это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Обязательным компонентом клеточного цикла является митотический цикл-комплекс взаимосвязанных и детерминированных хронологически событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Митотический цикл включает в себя митоз,а также период покоя (G0), постмитотический (G1), синтетический (S) и предмитотический(G2) периоды интерфазы.

Интерфаза (периоды и процессы, проходящие здесь).

Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки. Совокупность интерфазных хромосом представляет собой хроматин . В состав хроматина входят: ДНК, белки и РНК в соотношении 1: 1,3: 0,2, а также неорганические ионы. Структура хроматина изменчива и зависит от состояния клетки.

Период покоя клетки ( G 0)- в период покоя судьба клетки не известна: она либо может начать подготовку к делению, либо погибнуть.

Постмитотический период ( G 1 ) . Фаза G1 – это основное рабочее состояние клетки. В этом состоянии идет транскрипция и трансляция, восстановление объема и внутреннего содержания клетки,идет размножение пластид и митохондрий.

Синтетический период ( S 1) – это период, когда ДНК в ядре удваивается. Репликация ДНК начинается во многих, однако строго определенных, местах, причем где-то раньше, где-то позже; тем не менее, к концу S-фазы каждая молекула ДНК удваивается полностью. В S-фазе в клетке активно синтезируются гистоны и прочие белки хроматина.

Среди белков хроматина имеется очень малая по количеству, но очень разнообразная и важная часть – специфические генные регуляторы (это те белковые репрессоры и активаторы, которые включают и выключают гены). Генов – десятки тысяч. Регуляторов меньше, так как каждый включает или выключает многие гены – иначе мы имели бы свой регулятор на каждый ген и впали бы в порочный круг. Важно подчеркнуть, что каждая клетка многоклеточного организма несет в себе все гены, присущие этому организму, но в каждой конкретной клетке работает только малая часть генов, тогда как остальные нужны в других типах клеток или в другие периоды жизни. Гены включаются и выключаются по мере необходимости, но при делении клеток определенного типа важно, чтобы включенные и выключенные состояния генов, характерные для данного типа, в целом были унаследованы. При репликации ДНК удваивается, и надо, чтобы регуляторные белки не только были дополнительно синтезированы в таком же количестве, которое было исходно, но и сели на свои места. Это достигается за счет кооперативного эффекта , который проявляют регуляторные белки, – наличие молекулы регуляторного белка, связанной с ДНК, провоцирует в своей непосредственной близости связывание такого же белка с таким же регуляторным сайтом вновь синтезированной ДНК. Об этом феномене принято говорить как об эпигенетическом наследовании состояния гена.

И в то же время репликация – это именно тот критический момент, когда многие гены выключаются или включаются в ходе индивидуального развития. В течение периода G1 среди других белков могут быть синтезированы новые регуляторы, и во время S перода они могут успешно конкурировать со старыми за вновь синтезированные регуляторные области ДНК. Или, наоборот, бывают недосинтезированы старые регуляторы, в результате созданные заново регуляторные области ДНК оказываются не занятыми или занятыми регуляторами, сродство которых к ним меньше. Кроме того, каждый белок-регулятор в моменты репликации ДНК вынужден конкурировать за те участки вновь синтезируемой ДНК, к которым он специфичен, с таким неспецифическим репрессором генной активности, как линкерный гистон Н1 (это тот гистон, который связывается с ДНК после того, как остальные гистоны образовали бусы из нуклеосом, и укладывает их в фибриллу диаметром 30 нм). Так, за счет некоторых изменений в присутствии регуляторов на регуляторных последовательностях ДНК тех или иных генов, в ходе индивидуального развития многоклеточного организма клетки и приобретают новые свойства.

Наконец, в клетке есть еще одна структура, удваивающаяся именно в S-периоде. Это центросома. В периоде G1 центросома выглядит так:

аморфное образование, внутри него находятся две расположенные перпендикулярно друг другу центриоли (но у растений центриолей нет). Центросома является местом, откуда формируется такой элемент цитоскелета, как микротрубочки. В интерфазе миркотрубочки растут от центросомы по направлению ко всей клеточной периферии. Некоторые из них становятся нестабильными и быстро разбираются на отдельные молекулы тубулина. В конце периода G1 центриоли расходятся на несколько микрон. А в S-периоде рядом с каждой центриолью строится вторая центриоль, и центросома удваивается.

Предмитотический период ( G 2) – подготовка к делению. На данной стадии нарабатываются определенные белки. В это время завершается формирование двух центросом, а система интерфазных микротрубочек начинает разрушаться, высвобождая тубулин, из которого микротрубочки состоят. Хромосомы в это время уже начинают дополнительно конденсироваться.Клетка готова к делению.

C обственно митоз.

Митоз-способ деления ядра,которое приводит к образованию двух дочерних клеток,в каждой из которых имеется точно такой же набор хромосом что и в родительских клетках. Собственно митоз также делится на несколько стадий. Митоз наступает при появлении в клетке специального митоз-стимулирующего фактора, который не может возникнуть, пока в клетке не закончилась репликация ДНК и другие подготовительные процессы. Под действием этого фактора запускается каскад фосфорилирования множества белков. В фосфорилированном состоянии они начинают активно функционировать. Один из наиболее интенсивно фосфорилируемых белков (до 6 фосфатных групп на молекулу) – это гистон Н1. При этом он теряет в сродстве с ДНК (так как его положительный заряд частично компенсируется отрицательно заряженными фосфатными группами), и с ней связываются другие белки, специфичные именно для митоза, что приводит к гораздо более плотной упаковке хромосом, чем в интерфазе. Еще один белок, который фосфорилируется в том же каскаде, запускающем митоз - когезин. В нефосфорилированном состоянии он соединяет вместе две сестринские хроматиды, образовавшиеся в результате репликации ДНК в S-фазе, образуя своего рода кольца вокруг пары хроматид. Фосфорилирование когезина в начале мейоза приводит к раскрытию колец и рассоедниению сестринских хроматид, за исключением центромеры,. Имеется механизм, который в этом районе снова фосфорилирует когезин, так что именно здесь сестринские хроматиды остаются соединенными друг с другом.

Первая стадия митоза – профаза . Главное, что происходит в профазе, – дополнительная упаковка (конденсация ) хромосом. В такой степени, что они становятся похожими сначала на спутанные нити, видимые в световой микроскоп.

В профазе происходят важные события и в цитоплазме. Имевшиеся в клетке микротрубочки деполимеризуются. При этом клетка как правило теряет свою специфическую форму и округляется. Вокруг центросом образуется так называемая звезда – система из радиально расходящихся микротрубочек, которые постепенно удлиняются. Микротрубочки в процессе митоза начинают обновляться в 20 раз быстрее, чем в интерфазе, и небольшому числу длинных микротрубочек приходит на смену множество коротких. Интенсивная сборка и разборка микротрубочек необходима для правильного течения митоза.

Когда микротрубочки двух звезд достигают друг друга, центросомы начинают расходиться к разным концам клетки и становятся ее полюсами, а сами микротрубочки формируют веретено деления . Дело в том, что многие микротрубочки, исходящие от разных полюсов навстречу друг другу, соединяются друг с другом определенными белками, которые стабилизируют их и предотвращают от деполимеризации.

Затем наступает прометафаза , которая знаменуется важнейшим событием – ядерная мембрана дефрагментируется на пузырьки и ядро исчезает как структура. При этом происходит деполимеризация ламины ядерного скелета, состоящего из филаментов определенных белков, подстилающих ядерную мембрану.Этот процесс также связан с фосфорилированием этих белков. Содержимое ядра объединяется с цитоплазмой. Тем самым восстанавливается состояние, похожее на прокариотическое, при котором ДНК находится в том же компартменте, что и рибосомы. Во время деления ядро исчезает. Это, по-видимому, указывает на то, что ядро – это временная рабочая структура, призванная разобщить тарнскрипцию и трансляцию, хотя бы ценой существенных энергетических затрат на ядерный транспорт и на то, чтобы от него, ядра, избавляться при всяком делении клетки и восстанавливать после него.

В прометафазе хромосомы конденсируются окончательно и принимают вид парных образований, напоминающих двойные палочки или червяков, причем каждая пара соединяется в месте своего рода перетяжки – это называется метафазные хромосомы .

(Теломера – это конец хромосомы, имеющий специфическую последовательность нуклеотидов. Вторичная перетяжка соответствует ядрышку – это место, где находятся гены рРНК – оно не конденсируется в той же степени, что и остальная хромосома. Спутник – это участок «нормальной» хромосомы за вторичной перетяжкой. Вторичная перетяжка и соответственно спутник есть далеко не на всех хромосомах, поэтому они помогают их идентифицировать.)

Метафазная хромосома – это хромосома в нерабочем состоянии, упакованная для деления. В рабочем состоянии, т. е. в интерфазе, хромосома представляет собой кисель, заваренный вокруг линейной молекулы ДНК, и ее не увидишь под микроскопом.

Метафазная хромосома – двойная. Две ее протяженные составляющие соответствуют двум линейным молекулам ДНК, образовавшимся при репликации. Они называются сестринские хроматиды .

Место соединения хроматид называется центромера . Она удваивается позже остальной ДНК, но в метафазной хромосоме центромера, так же как и вся хромосома, состоит из двух хроматид, только в этом месте соединенных определенными белками. Местоположение центромеры на молекуле ДНК (хромосоме) определяется, как и все вообще на ней, – специфической первичной структурой. Центромера содержит определенные последовательности, многократно повторенные голова к хвосту. Это тандемные повторы . Их много на хромосоме, они разные, некоторые из них обладают способностью служить центром организации центромеры, причем структура центромерных повторов может быть разной у разных видов и даже у разных хромосом одного вида.

В прометафазе происходит следующее. На центромере каждой из хроматид формируется определенная структура, называемая кинетохор (см. рис. ниже). Он состоит, как вы, наверное, догадались, из определенных белков. Подчеркнем, что каждая хромосома несет два кинетохора, по одному – на каждую из своих хроматид. Каждый кинетохор связывается с растущими концами микротрубочек, отходящих от полюсов клетки. К каждому кинетохору прикрепляется несколько десятков микротрубочек (но вот у дрожжей – только одна).

При этом кинетохоры разных хроматид одной хромосомы связываются с микротрубочками, отходящими от разных полюсов. В прометафазе хромосомы, как правило, активно блуждают по цитоплазме. Поначалу оба кинетохора могут связываться с микротрубочками одного полюса, однако вскоре происходит определенная перестройка контактов кинетохора с микротрубочками, так что центромера одной хроматиды оказывается связанной с микротрубочками, идущими только от одного из полюсов веретена деления.

В прометафазе микротрубочки активно растут, и именно с того конца, который прикреплен к кинетохору. В метафазе этот рост компенсируется деполимеризацией концов микротрубочек у центросомы, так что молекулы тубулина постепенно перемещаются от концов к полюсам, а микротрубочка остается натянутой и сохраняет постоянную длину.

Контакт кинетохора с микротрубочками уникален. Во первых, он стабилизирует микротрубочку, так что связанные с хромосомами микротрубочки не подвержены самопроизвольной тотальной деполимеризации. К концу митоза концы трубочек, присоединенных к кинетохору, начинают активно разбираться. И при этом тот же самый активный конец, растущий либо разрушающийся, остается прочно связанным с кинетохором, который, по-видимому, присоединяет микротрубочки сбоку, но непременно вблизи конца, представляя собой нечто вроде скользящего ошейника.

В прометафазе хромосомы, ведомые микротрубочками, осуществляют сложный танец, но к наступлению следующей стадии – метафазы – все хромосомы располагаются в экваториальной плоскости (плоскость, находящаяся строго между центросомами и перпендикулярная веретену). Это достигается вследствие того, что, как показали опыты, на этой стадии микротрубочки, несмотря на активный обмен тубулина на присоединенных к кинетохору концах, тянут хромосомы на себя. Причем сила тяготения пропорциональна длине микротрубочки, т. е. они функционируют как пружины. Эти силы уравниваются, когда микротрубочки, идущие от разных полюсов, оказываются одинаковой длины.

В метафазе все процессы в клетке как бы замирают, выстроившиеся в метафазных пластинках хромосомы совершают только колебательные движения. По-видимому, это делается для того, чтобы дождаться хромосом, которые могли бы отстать по разным причинам и обеспечить одновременный старт.

Следующая стадия – анафаза – наступает с внезапного и одновременного отделения центромер двух хроматид друг от друга. Это происходит в ответ на стремительное десятикратное увеличение концентрации ионов кальция в клетке. Они выделяются из мембранных пузырьков, окружающих клеточный центр. Повышенная концентрация кальция активирует определенный фермент, который разрезает когезиновые кольца, еще остающиеся в центромере и соединяющие сестринские хроматиды, так что они отделяются друг от друга наконец и здесь. Ведомые притяжением микротрубочек через кинетохоры, хромосомы немедленно начинают расходиться к полюсам клетки – каждая из двух сестринских хроматид к своему полюсу.

Движение хромосом в анафазе происходит за счет двух процессов разного рода. Во-первых, начинается деполимеризация микротрубочек, связанных с кинетохорами.Это вызвано исчезновением натяжения микротрубочек, стабилизирует конец микротрубочки.

Однако до сих пор не совсем понятно, что именно заставляет кинетохор двигаться – его сродство с концом полимеризованной микротрубочкой, так что он вынужден продвигаться по мере его разборки, либо же он сам активно «проедает» микротрубочку – движется по ней и способствует ее деполимеризации. Есть также точка зрения, что микротрубочка – это только рельсы, но не двигатель, а хромосома движется под действием каких-то белков, не связанных с микротрубочкой (однако это не актин и миозин). Существуют даже модели, что хромосома движется на волне локального разжижения цитоплазмы, связанной опять-таки с полимеризацией и деполимеризацией неких белков. Кроме того, в анафазе продолжается и даже ускоряется деполимеризация микротрубочек у полюсов, что вносит вклад в их быстрое укорочение.

Во-вторых, сами центросомы в стадии анафазы расходятся друг от друга, иногда довольно значительно. Это опять-таки происходит под действием нескольких процессов. Микротрубочки, идущие от разных полюсов и прикрепленные не к кинетохорам, а друг к другу, в метафазе не укорачиваются, а, наоборот, нарастают и удлиняются. Они, по-видимому, способны активно отталкиваться друг от друга под действием каких-то специальных белков, родственных тем, которые движут жгутики, построенные на основе микротрубочек. Наконец, микротрубочки звезды, отходящие от центросом в разные стороны и связавшиеся с цитоскелетом кортикальной области вблизи центросомы, сокращаются в длине, подтягивая центросомы на себя, по тем же механизмам, которые притягивают хромосомы.

На следующей стадии – телофазе – около хромосом, собравшихся вокруг каждой центросомы, начинает образовываться новая ядерная оболочка. Двойная мембрана возрождается из пузырьков, белки ядерной ламины дефосфорилируются и снова формируют этот скелет, ядерные поры снова собираются из составных частей.

Итак, суть рассмотренных нами стадий митоза состоит в удвоении ядра. Это удвоение начинается со скрытого от глаз удвоения хромосом в интерфазе, а продолжается через его саморазрушение как структуры в ходе митоза. Когда ядро удвоилось, необходимо разделить цитоплазму – осуществить цитокинез .

У животных разделение происходит за счет образования перетяжки между двумя клетками. Сначала на поверхности клетки возникает борозда, под ней формируется так называемое сократимое кольцо . Она образуется из актиновых филаментов кортекса (компонентов цитоскелета, находящихся под клеточной мембраной). Кольцо действительно сокращается. Это происходит за счет взаимодействия актина микрофиламентов с миозином. Эти же два белка участвуют в мышечном сокращении.

Расположение первичной борозды и сократимого кольца определяется расположением веретена деления. По мере сокращения кольца клетка разделяется перетяжкой на две, которые в конце концов разделяются, вдобавок оставляя еще небольшое остаточное тельце – связанные друг с другом фрагменты встречных микротрубочек веретена, располагавшиеся первоначально в экваториальной плоскости.

1 ) постмитотический (пресинтетический) q 1 (G 1) – от 10 часов до нескольких суток. Следует вслед за делением. В молодых дочерних клетках наблюдается высокая интенсивность процессов транскрипции, формирование синтетического аппарата клетки – увеличение количества рибосом, различных видов РНК (рРНК, мРНК, иРНК). Усиление синтеза белка, синтезируются структурные и функциональные белки, интенсивный клеточный метаболизм, контролируемый ферментами, рост клетки, образование и восстановление необходимого числа органоидов

2 ) синтетический S - 6 – 10 часов; Значительным событием является удвоение (редупликация ДНК), что приводит к удвоению плоидности (содержание ДНК удваивается) диплоидных ядер (хромосомы становятся двухроматидными) и является обязательным условием для последующего митотического деления клеток. Происходит также синтез РНК, гистоновых белков, продолжается рост клетки.

3 ) постсинтетический (премитотический ) q 2 (G 2) – 2 – 5 часов. Продолжается синтез РНК, всех белков, особенно ядерных, а также белка тубулина необходимого для формирования ахроматинового веретена митотического аппарата, образующегося в профазе митоза и мейоза. Происходит накопление питательных веществ, энергии, синтез АТФ. Деление митохондрий, хлоропластов, репликация центриолей и начало образования веретена деления. В конце этого периода клетка переходит к профазе митоза.

Главные события митотического цикла:

1) редупликация самоудвоение наследственного материала (синтетический период)

2) равномерное распределение наследственного материала между дочерними клетками (анафаза митоза – распределение хроматид – дочерних хромосом.)

Соотношение количества днк (с) и хромосом (n) в митотическом цикле:

МИТОЗ: 1) Профаза 2п 4с, 2) Метафаза 2п 4с, 3) Анафаза 4п 4с (однохроматидные дочерние хромосомы), 4) Телофаза 2п 2с (однохроматидные дочерние хромосомы)

ИНТЕРФАЗА : 1) Постмитотический период 2п 2с (однохроматидные дочерние-сестринские хромосомы)

2) Синтетический период 2п 4с, 3) Постсинтетический период 2п 4с (двухроматидных материнские хромосомы)

Обратить внимание, что хроматида содержит одну молекулу ДНК (с).

Образование сестринской

хроматиды

Хромосома интерфазного ядра

Схема митотического цикла

Жизненный цикл клеток (клеточный цикл) – это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Обязательным компонентом жизненного цикла, является митотический цикл. Многие клетки выходят из митотического цикла на путь специализации, дифференцируются, выполняют определённые функции и их жизнь заканчивается смертью. Однако некоторые дифференцированные клетки (эпителиальные, соединительно-тканные) при определённых условиях переходят к подготовке к митозу и самому митозу. У таких клеток жизненный цикл продолжительнее митотического. Для разных типов клеток жизненный цикл различен.В некоторых клетках отсутствуют те или иные фазы митотического цикла. Часть клеток выходят из митотического цикла на путь дифференцировки и специализации, их пресинтетический период удлиняется. У нервных клеток этот период продолжается в течение всей жизни организма, и они не делятся, поэтому жизненный цикл таких клеток, например, нервных, не совпадает с митотическим циклом. Клетки, образующие обновляющиеся клеточные популяции постоянно делятся, проходя митоз и интерфазу, имеют клеточный цикл, совпадающий с митотическим циклом это, например эмбриональные клетки, ростовые базального слоя кожи, клетки образовательной ткани растений (кончик корня, стебля, камбий), регенерирующие клетки, клетки семенников.

Интерфаза — это период жизненного цикла клетки, заключенный между концом предыдущего деления и началом следующего. С репродуктивной точки зрения такое время можно назвать подготовительным этапом, а с биофункциональной — вегетативным. В период интерфазы клетка растет, достраивает утраченные при делении структуры, а затем метаболически перестраивается для перехода к митозу или мейозу, если какие-либо причины (например, тканевая дифференцировка) не выведут ее из жизненного цикла.

Так как интерфаза — это промежуточное состояние между двумя мейотическими или митотическими делениями, ее иначе называют интеркинезом. Однако второй вариант термина можно использовать только применительно к клеткам, которые не потеряли способности к делению.

Общая характеристика

Интерфаза — самая продолжительная часть клеточного цикла. Исключение составляет сильно укороченный интеркинез между первым и вторым делениями мейоза. Примечательной особенностью данного этапа является также то, что здесь не происходит дуплицирование хромосом, как в интерфазе митоза. Эта особенность связана с необходимостью уменьшения диплоидного набора хромосом до гаплоидного. В некоторых случаях межмейотический интеркинез может полностью отсутствовать.

Стадии интерфазы

Интерфаза — это обобщенное название трех следующих друг за другом периодов:

  • пресинтетического (G1);
  • синтетического (S);
  • постсинтетического (G2).

В клетках, не выпадающих из цикла, стадия G2 непосредственно переходит в митоз и потому иначе называется премитотической.

G1 — это этап интерфазы, наступающий сразу после деления. Поэтому клетка имеет вдвое меньший размер, а также пониженное примерно в 2 раза содержание РНК и белков. На протяжении всего пресинтетического периода происходит восстановление всех компонентов до нормы.

За счет накопления белка клетка постепенно растет. Происходит достройка необходимых органелл и увеличение объема цитоплазмы. Одновременно с этим растет процентное содержание различных РНК и синтезируются ДНК-предшественники (нуклеотидтрифосфаткиназы и др.). По этой причине блокировка продуцирования информационных РНК и протеинов, характерных для G1, исключает переход клетки к S-периоду.

На этапе G1 отмечается резкое повышение энзимов, задействованных в энергетическом обмене. Период также характеризуется высокой биохимической активностью клетки, а накопление структурно-функциональных компонентов дополняется запасанием большого количества молекул АТФ, которые будут служить энергетическим резервом для последующей перестройки хромосомного аппарата.

Синтетический этап

В S-период интерфазы происходит ключевой момент, необходимый для деления, - репликация ДНК. При этом удваиваются не только генетические молекулы, но и число хромосом. В зависимости от времени осмотра клетки (в начале, в середине либо в конце синтетического периода) можно обнаружить количество ДНК от 2 до 4 с.

S-этап представляет собой ключевой переходный момент, который "решает", наступит ли деление. Единственным исключением из этого правила является интерфаза между мейозами I и II.

В клетках, постоянно находящихся в состоянии интерфазы, S-период не наступает. Таким образом, клетки, которые не будут делиться снова, останавливаются на стадии с особым названием — G0.

Постсинтетический этап

Период G2 — окончательный этап подготовки к делению. На этой стадии осуществляется синтез молекул информационных РНК, необходимых для прохождения митоза. Одним из ключевых белков, которые продуцируются в это время, являются тубулины, служащие строительным материалом для формирования веретена деления.

На границе между постсинтетическим этапом и митозом (или мейозом) синтез РНК резко снижается.

Что такое клетки G0

Для некоторых клеток интерфаза — это постоянное состояние. Оно характерно для некоторых составляющих специализированных тканей.

Состояние неспособности к делению условно обозначается стадией G0, поскольку G1-период также считается фазой подготовки к митозу, хоть и не включает связанные с этим морфологические перестройки. Таким образом, G0-клетки считаются выпавшими из цитологического цикла. При этом состояние покоя может быть как постоянным, так и временным.

В фазу G0 чаще всего переходят клетки, завершившие дифференциацию и специализировавшиеся на конкретных функциях. Однако в некоторых случаях такое состояние обратимо. Так, например, клетки печени при повреждении органа могут восстанавливать способность к делению и переходить из состояния G0 в период G1. Этот механизм лежит в основе регенерации организмов. В нормальном состоянии большая часть клеток печени находится в фазе G0.

В некоторых случаях G0-состояние является необратимым и сохраняется до цитологической смерти. Такое характерно, например, для ороговевающих клеток эпидермиса или кардиомиоцитов.

Иногда, наоборот, переход в G0-период вовсе не означает потерю способности к делению, а лишь предусматривает планомерную приостановку. К этой группе относят камбиальные клетки (например, стволовые).

Промежуток времени между клеточными делениями называется интерфазой .

Некоторые цитологи выделяют два вида интерфаз: гетеросинтетическую и аутосинтетическую.

В период гетеросинтетеической интерфазы клетки работают на организм, выполняя свои функции составного компонента того или иного органа или такни. В период аутосинтетической интерфазы клетки готовятся к митозу или мейозу. В этой интерфазе выделяют три периода: пресинтетический – G 1 , синтетический – S, и постсинтетический – G 2 .

В S-периоде продолжается синтез белка и происходит репликация ДНК. В большинстве клеток этот период длится 8-12 часов.

В G 2 – периоде продолжается синтез РНК и белка (например, тубулина для построения микротрубочек веретена деления). Происходит …
накопление АТФ для энергетического обеспечения последующего митоза. Эта фаза длится 2-4- часа.

Кроме интерфазы, для характеристики временной организации клеток выделяют такие понятия, как жизненный цикл клеток, клеточный цикл и митотический цикл. Под жизненным циклом клетки понимают время жизни клетки с момента ее возникновения после деления материнской клетки и до конца ее собственного деления или же до гибели.

Клеточный цикл – это совокупность процессов, протекающих в аутосинтетическую интерфазу, и собственно митоз.

11. Митоз. Его сущность, фазы, биологическое значение. Амитоз.

МИТОЗ

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.

Рис.28 . Характеристика митоза и мейоза.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Рис.29. Амитоз.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

12. Мейоз. Стадии, биологическое значение.

МЕЙОЗ

Мейоз (греч. мейозис – уменьшение) имеет место на стадии созревания гамет. Благодаря мейозу из диплоидных незрелых половых клеток образуются гаплоидные гаметы: яйцеклетки и сперматозоиды. Мейоз включает в себя два деления: редукционное (уменьшительное) и эквационное (уравнительное), каждое из которых имеет те же фазы, что и митоз. Однако, несмотря на то, что клетки делятся два раза, удвоение наследственного материала происходит только один раз – перед редукционным делением — и отсутствует перед эквационным.

Цитогенетический результат мейоза (образование гаплоидных клеток и перекомбинация наследственного материала) происходит во время первого (редукционного) деления. Оно включает 4 фазы: профазу, метафазу, анафазу и телофазу.

Профаза I подразделяется на 5 стадий:
лептонемы, (стадия тонких нитей)
зигонемы
стадия пахинемы (толстых нитей)
стадии диплонемы
стадия диакинеза.

Рис.31. Мейоз. Процессы, происходящие при редукционном делении.

В стадии лептонемы происходит спирализация хромосом и их выявление в виде тонких нитей с утолщениями по длине. В стадии зигонемы продолжается компактизация хромосом, а гомологичные хромосомы сближаются попарно и конъюгируют: каждая точка одной хромосомы совмещается с соответствующей точкой гомологичной хромосомы (синапсис). Две рядом лежащие хромосомы образуют биваленты.

В пахинеме между хромосомами, составляющими бивалент, может происходить обмен гомологичными участками (кроссинговер). На этой стадии видно, что каждая конъюгирующая хромосома состоит из двух хроматид, а каждый бивалент – из четырех хроматид (тетрад).

Диплонема характеризуется, появлением сил отталкивания конъюгатов начиная от центромер, а затем и в других участках. Хромосомы остаются связанными между собой только в местах кроссинговера.

В стадии диакинеза (расхождение двойных нитей) парные хромосомы частично расходятся. Начинается формирование веретена деления.

В метафазе I пары хромосом (биваленты) выстраиваются по экватору веретена деления, образуя метафазную пластинку.

В анафазе I к полюсам расходятся двухроматидные гомологичные хромосомы, и на клеточных полюсах скапливается их гаплоидный набор. В телофазе 1 происходят цитотомия и восстановление структуры интерфазных ядер, каждое из которых содержит гаплоидное число хромосом, но диплоидное количество ДНК (1n2c). После редукционного деления клетки переходят в короткую интерфазу, во время которой не наступает период S, и начинается эквационное (2-е) деление. Оно протекает, как обычный митоз, в результате чего образуются половые клетки, содержащие гаплоидный набор однохроматидных хромосом (1n1c)

Рис.32 . Мейоз. Эквационное деление.

Таким образом, во время второго мейотического деления количество ДНК приводится в соответствие с количеством хромосом.

12.Гаметогенез: ово — и сперматогенез.
Размножение, или самовоспроизведение, является одной из важнейших характеристик природы и присуще живым организмам. Передача генетического материала от родителей к следующему поколению в процессе размножения обеспечивает непрерывность существования рода. Процесс размножения у человека начинается с момента проникновения мужской половой клетки в женскую половую клетку.

Гаметогенез – это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез).

Гаметогенез протекает в половых железах — сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки — яйцеклетки, а у мужчин — мужские половые клетки сперматозоиды.
Именно процесс гаметогенез (сперматогенез, овогенез) дает возможность мужчине и женщине возможность воспроизведения потомства.



Похожие статьи

  • Английский - часы, время

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • "Алхимия на бумаге": рецепты

    Doodle Alchemy или Алхимия на бумаге на Андроид — интересная головоломка с красивой графикой и эффектами. Узнайте как играть в эту удивительную игру, а также найдите комбинации элементов для прохождения игры Алхимия на бумаге. Игра...

  • Не запускается Batman: Arkham City (Batman: Аркхем Сити)?

    Если вы столкнулись с тем, что Batman: Arkham City тормозит, вылетает, Batman: Arkham City не запускается, Batman: Arkham City не устанавливается, в Batman: Arkham City не работает управление, нет звука, выскакивают ошибки, в Batman:...

  • Как отучить от игровых автоматов человека Как отучить играть в азартные игры

    Вместе с психотерапевтом московской клиники Rehab Family и специалистом в терапии игромании Романом Герасимовым «Рейтинг Букмекеров» проследил путь игромана в ставках на спорт – от формирования зависимости до обращения к врачу,...

  • Ребусы Занимательные ребусы головоломки загадки

    Игра "Загадки Ребусы Шарады": ответ к разделу "ЗАГАДКИ" Уровень 1 и 2 ● Не мышь, не птица - в лесу резвится, на деревьях живёт и орешки грызёт. ● Три глаза - три приказа, красный - самый опасный. Уровень 3 и 4 ● Две антенны на...

  • Сроки поступления средств на ЯД

    СКОЛЬКО ИДУТ ДЕНЬГИ НА СЧЕТ КАРТЫ СБЕРБАНКА Важные параметры платежных операций – сроки и тарифы зачисления денежных средств. Эти критерии прежде всего зависят от выбранного способа перевода. Какие условия перечисления денег между счетам