Эпигенетические преобразования. Эпигенетика и болезни человека: введение. Эпигенетические механизмы регуляции генов

В журнале «The Lancet» («Ланцет»), ведущем медицинском журнале, в 2010 году была опубликована критическая статья о синдроме дефицита внимания и гиперактивности (СДВГ) и наследственности.

Авторы этой статьи сильно критиковали тот факт, что фармацевты и консервативные медики сознательно и заведомо неправильно общаются с пациентом, когда речь идет о таком термине, как наследственность. Людям внушают, что это заболевание является наследственным, а, следовательно, неизлечимым. Идея этой стратегии заключается в развитии терапевтической зависимости, которая очень удобна фармацевтической промышленности для продажи лекарственных препаратов.

Благодаря эпигенетике мы знаем, что СДВГ является эпигенетическим заболеванием. Другими словами, СДВГ вызван не фатальным наследственным фактором (ошибками в ДНК), а обратимым взаимодействием генов с окружающей их средой. Это объясняет тот факт, что взрослые и дети с синдромом гиперактивности наблюдают быстрое улучшение всех симптомов при изменении своего рациона питания.

Генетика – наука, которая описывает наследственность на основе необратимых ошибок в записи ДНК.

Эпигенетика – это наука, которая занимается исследованием влияния внешних факторов на функционирование генов. Эпигенетика изучает суть проблемы, особенно ошибки воспроизведения (синтеза) белков.

Нутригеномика является специализацией в эпигенетике и исследует влияние питания на функционирование генов.

Генетика и эпигенетика, таким образом, имеют различные взгляды на проблему пациента. В генетике пациент является «жертвой» своей болезни, в этом случае мы можем только держать «под контролем» ситуацию. В эпигенетике ставится акцент на причинные факторы. Это означает, что при изменении условий окружающей среды пациент может снова получить контроль над своим здоровьем.

Генетические и эпигенетические заболевания

Генетическое заболевание, вызванное дефектом того или иного гена, относится к моногенетическим заболеваниям. Это означает, что заболевание вызвано одним дефектным геном. Ген состоит из специфических кодов, которые мы называем ДНК. В этих кодах могут возникать ошибки (мутации). Одна такая мутация может лежать в корне наследственного моногенетического заболевания.

В отличие от генетических заболеваний эпигенетические нарушения не вызываются мутацией ДНК, а возникают под влиянием факторов окружающей среды, таких как: пища, травматический опыт, пренатальный стресс, различные химические вещества. Если говорить в молекулярных терминах, то все эти окружающие факторы могут выключить или включить работу специфических генов. Генетические заболевания («орфографические ошибки» в записи ДНК) встречаются в 0,5 % от всех наследственных заболеваний. Генетические заболевания, как правило, необратимы (например, синдром Дауна).

Эпигенетические заболевания – отклонения в работе гена, при которых ДНК остается неповрежденным. Эпигенетическое заболевание может возникнуть двумя способами.

  1. Первый способ – врожденный (в утробе матери или при ретрансляции нездоровых генов от отца или от матери).
  2. Второй способ – приобретенное состояние, в котором у кого-то, например, развивается диабет типа 2 при нездоровом образе жизни. Второй способ относится к воздействиям извне – эпигенетический фактор, например, несбалансированное питание или употребление наркотиков. Эта категория также включает в себя большинство психических и хронических заболеваний, которые, как правило, обратимы. Как только человек восстанавливает работу генов (например, путем использования соответствующей диеты), симптомы исчезают.

Синдром дефицита внимания и гиперактивности (СДВГ) — о коррекции с точки зрения интегративной медицины.

Учебные материалы к изучению и применению на практике:

Синдром дефицита внимания и гиперактивности (СДВГ) - о коррекции с точки зрения интегративной медицины. Подробности
Ох, уж эти «неудобные» дети. Подробности
Здоровье наших детей: Аутизм, Тяжелые металлы, Синдром гиперактивности. Подробности

Интересная статья? Ставь лайки, пиши комменты, делись с друзьями!!!

Генетика предполагает, а эпигенетика располагает.

Генетика предполагает, а эпигенетика располагает. Почему беременным женщинам надо принимать фолиевую кислоту?

Меня всегда поражал один интересный факт - отчего некоторые люди, так рьяно старающиеся вести здоровый образ жизни, не курить, спать положенное число часов каждый день, употреблять в пищу самые свежие и натуральные продукты, одним словом, делать всё то, о чем так любят назидательно рассказывать врачи и диетологи, порой живут гораздо меньше, чем заядлые курильщики или предпочитающие не сильно ограничивать себя в еде лежебоки? Может быть, врачи просто сгущают краски?

Что происходит?

Всё дело в том, клетки нашего организма обладают памятью, и это уже вполне доказанный факт.

Наши клетки содержат в своих ядрах одинаковый набор генов - участков ДНК, которые несут информацию о молекуле белка или РНК, определяющих путь развития организма в целом. Несмотря на то, что молекула ДНК - это самая длинная молекула в человеческом организме, в которой заключена полная генетическая информация об индивидууме, не все участки ДНК работают одинаково эффективно. В каждой конкретной клетке могут работать разные участки макромолекулы, а большая часть генов человека и вовсе неактивна. На долю генов ДНК, кодирующих белок, у человека приходится менее 2 % генома, а ведь именно они считаются носителями всех генетических признаков. Те гены, которые несут основную информацию об устройстве клетки, как раз активны на протяжении всего времени жизни клетки, но ряд других генов «работает» непостоянно, и их работа зависит от множества факторов и параметров, в том числе и внешних.

Существует достаточно большое количество наследственных заболеваний, среди которых особо выделяются генные болезни - так называемые моногенные заболевания, которые возникают при повреждениях ДНК на уровне гена - это многочисленные болезни обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов, соединительной ткани и так далее. Известно, что часто наследуется именно предрасположенность к тому или иному заболеванию, поэтому человек может быть лишь носителем мутаций в структурных генах и не страдать от генетического заболевания.

Памятник около Института цитологии и генетики СО РАН, Академгородок, Новосибирск

В организме человека существуют особые механизмы контроля экспрессии генов и клеточной дифференцировки, не затрагивающие саму структуру ДНК. «Регулировщики» могут находиться в геноме или представлять собой особые системы в клетках и осуществлять контроль над работой генов в зависимости от внешних и внутренних сигналов различной природы. Подобные процессы - дело рук эпигенетики, которая накладывает свой отпечаток даже на сверхблагополучную генетику, и последняя может в итоге не реализоваться. Другими словами, эпигенетика дает объяснение тому, как факторы окружающего мира могут повлиять на генотип, «активируя» или «дезактивируя» разные гены. Нобелевский лауреат по биологии и медицине Питер Медавар, ёмкое выражение которого вынесено в заголовок статьи, очень точно сформулировал важность влияния эпигенетики на конечный результат.

Что это такое и с чем её едят?

Эпигенетика - наука совсем молодая: её существование не насчитывает и ста лет, что, впрочем, вовсе не мешает ей находиться в статусе одной из самых перспективных дисциплин последнего десятилетия. Направление это настолько популярное, что заметки об эпигенетических исследованиях достаточно часто появляются в последнее время как в серьезных научных журналах, так и в ежемесячниках для широкого круга читателей.

Сам термин появился в 1942 году, и его придумал один из известнейших биологов Туманного Альбиона - Конрад Уоддингтон. А известен этот человек прежде всего тем, что именно он заложил основы междисциплинарного направления, названного в 1993 году термином «системная биология» и сплавляющего воедино собственно биологию и теорию сложных систем.

Конрад Хэл Уоддингтон (1905-1975)

В книге немецкого нейробиолога Петера Шпорка «Читая между строк ДНК» объясняется происхождение этого термина следующим образом - Уоддингтон предложил такое название, которое было чем-то средним между непосредственно термином «генетика» и пришедшим к нам ещё из трудов Аристотеля «эпигенезом» - так когда-то было названо учение о последовательном эмбриональном развитии организма, в ходе которого происходят образования новых органов. С переводе с греческого «epi » означает «на, над, сверху», эпитенетика - это как будто что-то «над» генетикой.
Вначале к эпигенетике относились очень пренебрежительно, что было, конечно же, следствием неясных представлений о том, как различные эпигенетические сигналы могут реализовываться в организме и к каким последствиям могут приводить. На момент выхода работ Конрада Уоддингтона в научном мире витали разрозненные догадки, а сам костяк теории ещё не был построен.
Вскоре стало понятно, что один из эпигенетических сигналов в клетке - это метилирование ДНК , то есть добавление метильной группы (-CH3 ) к цитозиновому основанию в матрице ДНК. Оказалось, что такая модификация ДНК приводит к снижению активности генов, поскольку этот процесс способен влиять на уровень транскрипции. Именно с этого момента эпигенетика прошла реинкарнацию и наконец превратилась в полноценную ветвь науки.
В 1980-е годы была опубликована работа, в которой показывалось, что метилирование ДНК коррелирует с репрессией - «замалчиванием» - генов. Это явление можно наблюдать у всех эукариот, кроме дрожжей. Нашими соотечественниками в дальнейшем были открыты тканевая и возрастная специфичность метилирования ДНК у эукариотических организмов, а также было показано, что ферментативная модификация генома может регулировать экспрессию генов и клеточную дифференцировку. Чуть позднее было доказано, что метилирование ДНК можно контролировать гормонально.
Профессор Моше Зиф (из Университета Макгилла, Канада) даёт такое образное сравнение: «Давайте представим гены в ДНК, как предложения, составленные из букв-нуклеотидов, полученных от родителей. Тогда метилирование - это как расстановка знаков препинания, которая может влиять на смысл фраз, акценты фраз, разбивку на параграфы. В итоге весь этот «текст» может по-разному читаться в разных органах -сердце, мозге и так далее. И, как мы знаем теперь, расстановка таких «знаков препинания» зависит и от тех сигналов, которые мы получаем извне. По всей видимости, этот механизм помогает гибче адаптироваться к изменчивым обстоятельствам внешнего мира».
Помимо метилирования ДНК, существует ещё целый ряд эпигенетических сигналов разнообразной природы - деметилирование ДНК, гистоновый код (модификация гистонов - ацетилирование ,метилирование , фосфорилирование и прочие), позиционирование элементов хроматина , транскрипционная и трансляционная репрессия генов малыми РНК . Интересно, что некоторые из этих процессов связаны с друг другом и даже взаимозависимы - это помогает надёжно осуществлять эпигенетический контроль за избирательным функционированием генов.

Попробуем разобраться в основах

По Уоддингтону, эпигенетика - «ветвь биологии, изучающая причинные взаимодействия между генами и их продуктами, образующими фенотип». Согласно современным представлениям, фенотип многоклеточных - это результат взаимодействия огромного количества продуктов генов в онтогенезе. Таким образом, генотип развивающегося организма на самом деле представляет собой эпигенотип. Работа эпигенотипа достаточно жёстко скоординирована и задаёт определённое направление в развитии. Однако, помимо этого направления, которое в итоге приводит к реализации основной для популяции линии фенотипа (фенотип нормы), существуют «тропинки» - субтраектории, благодаря которым реализуются устойчивые, но отличные от нормы состояния фенотипа. Так реализуется поливариантность онтогенеза.
Интересно задуматься о том, что все клетки развивающейся особи вначале тотипотентны - это значит, что они обладают одинаковой потенцией к развитию и способны дать начало любому типу клеток организма. С течением времени происходит дифференцировка, в ходе которой клетки приобретают разные свойства и функции, становясь нейронами, эритроцитами, миоцитами и так далее. Расхождение свойств происходит за счет экспрессии различных паттернов генов: на определенных этапах развития клетка получает специальные сигналы, например, гормональной природы, которые реализуют тот или иной эпигенетический «маршрут», что и приводит к клеточной дифференцировке.
Конрад Уоддингтон ввел удачную метафору - «эпигенетический ландшафт», благодаря которой становится понятен механизм влияния природно-средовых факторов на развитие молодого организма эукариот. Процесс онтогенеза - это поле возможностей, представляющее собой ряд эпигенетических траекторий, по которым проложена дорога в развитии особи от зиготы до взрослого состояния. Каждая «равнина» этого ландшафта существует не просто так - она ведёт к формированию ткани или органа, а иногда и целой системы или части организма. Траектории, получающие преимущество, в работах Уоддингтон называны креодами, а холмы и хребты, разделяющие траектории, репеллерами - «отталкивателями». В сороковых годах прошлого века ученые не имели представлений о физической модели генома, поэтому предположения Уоддингтона были настоящей революцией.

Эпигенетический ландшафт по Уоддингтону

Развивающийся организм - это шар, который может катиться, следуя различным «вариациям» своего развития. Ландшафт накладывает некоторые ограничения на траекторию движения шара по мере того, как он спускается с возвышенности. Фактор из внешней среды может повлиять на изменение курса шара, тем самым спровоцировав попадание шара в более глубокую впадину, из которой не так легко выбраться.
Промежутки между эпигенетическими впадинами - это критические точки для молодого организма, в которых процесс развития приобретает чёткие формы в том числе и в зависимости от факторов среды. Переходы между соединяющимися впадинами указывают на процесс развития между основными изменениями, а склоны впадин характеризуют скорость этого процесса: пологие впадины - знак относительно устойчивых состояний, в то время как крутые склоны - сигнал быстрых изменений. При этом в местах переходов внешние факторы вызывают более серьёзные последствия, в то время как в других областях ландшафта их влияние может быть незначительным. Красота идеи эпигенетического ландшафта заключается ещё и в том, что она хорошо иллюстрирует один из принципов развития: к одинаковому результату можно прийти совершенно разными путями.

Критические точки эпигенетического ландшафта, аналогия с шаром: 2 возможных траектории

После того, как эпигенетическая траектория выстроена, клетки уже не могут свободно отойти от своего пути развития - так из зиготы, одной-единственной «стартовой» клетки, образуется эукариотический организм, обладающий набором клеток, совершенно разных по виду и функциям. Таким образом, эпигенетическое наследование - это наследование паттерна экспрессии генов.

Иллюстрация к теории эпигенетического ландшафт. Варианты развития событий

Кроме описания морфогенеза конкретной особи, вполне можно говорить об эпигенетическом ландшафте популяции, то есть о предсказуемости реализующегося фенотипа для той или иной популяции, в том числе и относительной частоты возможных вариативных признаков.

Фолиевая кислота и неслучайные случайности

Один из первых наглядных экспериментов, показывающих, что эпигенетика действительно «располагает», был проведён профессором Рэнди Джиртлом и постдоком Робертом Уотерлендом из университета Дьюка, США. Они внедрили обычным лабораторным мышами ген окраски агути. Агути или, как их ещё называют, «южноамериканские золотистые зайцы» - род млекопитающих отряда грызунов, внешне похожих на морских свинок. Эти грызуны обладают золотистой шерстью, иногда даже с оранжевым оттенком. Интегрированный в геном мышей «чужой» ген привёл к тому, что лабораторные мыши поменяли окраску - их шерсть стала жёлтой. Однако ген агути принёс мышам некоторые неприятности: после его внедрения животные приобрели лишний вес, а также предрасположенность к диабету и онкологическим заболеваниям. Такие мыши приносили нездоровое потомство, с теми же предрасположенностями. Мышата были золотистого цвета.

Симпатичный агути (Dasyprocta aguti)

Однако экспериментаторам всё же удалось «выключить» нехороший ген, не прибегая к изменению нуклеотидов ДНК. Беременных самок трансгенных мышей посадили на специальную диету, обогащённую фолиевой кислотой - источником метильных групп. В результате рождённые мышата были уже не золотистого, а естественного окраса.

Почему «сработала» фолиевая кислота? Чем больше метильных групп поступало из пищи в развивающийся зародыш, тем больше возможностей было у ферментов, катализирующих присоединение метильной группы к эмбриональной ДНК, что дезактивировало возможное действие гена. Профессор Джиртл так прокомментировал свой эксперимент и его результаты: «Эпигенетика доказывает, что мы ответственны за целостность нашего генома. Раньше мы думали, что только гены предопределяют, кто мы. Сегодня мы точно знаем: всё, что мы делаем, всё, что мы едим, пьем или курим, оказывает воздействие на экспрессию наших генов и генов будущих генераций. Эпигенетика предлагает нам новую концепцию свободного выбора».

Профессор Рэнди Джиртл и его трансгенные мыши

Не менее интересных результатов добился Майкл Мини из Университета Макгилла в канадском Монреале, наблюдая за крысами, воспитывающими своё потомство. Если крысята с рождения постоянно получали внимание и заботу матери, то они росли спокойными по характеру и достаточно смышлёными. Напротив, крысята, матери которых с самого начала игнорировали своё потомство и мало его опекали, вырастали боязливыми и нервными. Как оказалось, причина крылась в эпигенетических факторах: забота крыс-мам о детях контролировала метилирование генов, которые отвечают за реакцию на стресс-рецепторы кортизола, экспрессируемых в гиппокампе. Ещё в одном эксперименте, проведённом чуть позже, те же факторы рассматривались применительно к человеку. Эксперимент проводился с использованием магнитно-резонансной томографии и имел целью установить какую-либо зависимость между оказываемой родителями заботой во время детского возраста и организацией мозга в целом. Оказалось, что забота матери играет ключевую роль в этом процессе. Взрослый человек, страдавший в детстве от дефицита любви и внимания матери, имел меньший размер гиппокампа, чем человек, детские годы которого были благополучны. Гиппокамп, как орган лимбической системы мозга, крайне многофункционален и похож на ОЗУ компьютера: принимает участие в формировании эмоций, определяет силу памяти, участвуя в процессе перевода кратковременной памяти в долговременную, связан с удержанием внимания, отвечает за скорость мышления, а также, помимо много другого, определяет предрасположенность человека к ряду психических заболеваний, в том числе к посттравматическому стрессовому расстройству.

Эрик Нестлер, профессор нейробиологии Фридмановского института мозга при Медицинском центре Маунт-Синай, Нью-Йорк, США, изучал механизмы возникновения депрессии на опытах всё с теми же мышами. Спокойных и дружелюбных мышей помещали в клетки с агрессивными особями. Спустя десять дней некогда счастливые и мирные мыши проявляли признаки депрессии: теряли интерес к вкусной еде, общению с противоположным полом, становились беспокойными, а некоторые из них и вовсе постоянно ели, набирая вес. Иногда оказывалось, что состояние депрессии было стабильным и полный выход представлялся возможным лишь в случае лечения антидепрессантами. Исследование ДНК-клеток «системы вознаграждения » мозга мышей из эксперимента показало, что примерно у 2000 генов изменилась картина эпигенетической модификации, а у 1200 из них увеличилась степень метилирования гистонов, при котором подавляется активность генов. Как оказалось, аналогичные эпигенетические изменения были обнаружены в ДНК головного мозга людей, которые умерли, находясь в депрессивном состоянии. Разумеется, депрессия сама по себе сложный многопараметрический процесс, но, видимо, он умеет «выключать» гены той области мозга, которая связана с получением удовольствия от жизни.

Но ведь депрессии подвержены не все люди… То же самое происходило и с мышами - около трети грызунов избежали негативного состояния, находясь в стрессовой ситуации, при том, что устойчивость присутствовала на уровне генов. Иными словами, у таких мышей отсутствовали характерные эпигенетические изменения. Однако, у «стойких» мышей произошли эпигенетические изменения в других генах клеток центра «системы вознаграждения » мозга. Таким образом, возможна альтернативная эпигенетическая модификация, которая выполняет защитную функцию, а устойчивость к стрессу - это не результат отсутствия генетически обусловленной склонности, а влияние эпигенетической программы, которая включается для защиты и противостояния травмирующему воздействию на психику.

Нестлер в своём отчете сообщил также следующее: «Мы обнаружили, что среди «защитных» генов, эпигенетически модифицированных у стойких к стрессу мышей, много таких, чья активность восстанавливается до нормы у депрессивных грызунов, которые были пролечены антидепрессантами. Это означает, что у людей, склонных к депрессии, антидепрессанты оказывают свое действие, помимо всего прочего, запуская защитные эпигенетические программы, которые естественным образом работают у более стойких индивидов. В таком случае следует искать не только новые, более мощные антидепрессанты, но и вещества, мобилизующие защитные системы организма».

Если есть в кармане пачка сигарет….

Ни для кого не секрет, что в обществе периодически вспыхивают серьезные споры, связанные с вопросом курения. Приверженцы пачки сигарет в кармане любят повторять о недоказанности вреда этой привычки, однако эпигенетика и здесь внезапно выходит из-за кулис. Всё дело в том, что у человека есть важный ген р16, способный тормозить развитие онкологических опухолей. Исследования, проведённые в последнее десятилетие, показывают, что некоторые вещества, содержащиеся в табачном дыме, заставляют выключаться р16, что, естественно, ни к чему хорошему не приводит. Но - вот что интересно! - недостаток белка, за производство которого отвечает р16, - стоп-кран для процессов старения. Учёные из Китая утверждают, что при правильном и безопасном для организма выключении гена возможно задержать процессы утраты мышечной массы и помутнения хрусталика.

В нормально функционирующей, здоровой и полноценной клетке гены, запускающие процесс образования онкологической опухоли, неактивны. Это происходит благодаря метилированию промоторов (стартовых «площадок» специфической транскрипции) этих онкогенов, называемых островками CpG. В ДНК азотистые основания цитозин (С) и гуанин (G) соединены фосфором, при этом на одном островке может находится до нескольких тысяч оснований, и около 70 % промоторов всех генов имеют эти островки.

Thymine(красный) , Adenine(зеленый) , Cytosine(синий) , Guanine(черный) - мягкие игрушки

Ацетальдегид алкоголя, побочный продуктпереработки этанола в организме человека, как и некоторые вещества, содержащиеся в табаке, ингибируют образование метильных групп на ДНК, что включает «спящие» онкогены. Известно что до 60 % всех мутаций в половых клетках приходится именно на островки CpG, что нарушает правильную эпигенетическую регуляцию генома. Метильные группы попадают в наш организм с пищей, поскольку мы не вырабатываем ни фолиевой, ни метиониновой аминокислот - богатых источников СН3 -групп. Если наш рацион не содержит этих аминокислот, то нарушение процессов метилирования ДНК неизбежно.

Разработки и планы на будущее

За последние годы эпигенетика успела существенно прорасти в технологии. В одном из обзоров Массачуссетского технологического института (США) эпигенетика названа среди десяти важнейших технологий, которые в ближайшее время могут изменить мир и оказать наибольшее влияние на человечество.
Моше Зиф так прокомментировал сложившуюся ситуацию: «В противоположность генетическим мутациям, эпигенетические изменения потенциально обратимы. Мутировавший ген скорее всего никогда не сможет вернуться в нормальное состояние. Единственное решение в данной ситуации - вырезать или дезактивировать этот ген во всех клетках, которые его несут. Гены же с нарушенным паттерном метилирования, с измененным эпигеномом могут быть возвращены к норме, и довольно просто. Уже существуют эпигенетические лекарства, например 5-азацитидин (коммерческое название - видаза), представляющий собой неметилированный аналог цитидина, нуклеозида ДНК и РНК, который, встраиваясь в ДНК, снижает ее уровень метилирования. Это лекарство используется сейчас против миелодиспластического синдрома, известного также, как прелейкемия».

Немецкая компания Epigenomics уже выпустила серию скрининг-тестов, позволяющих диагностировать онкологическое заболевание на разных стадиях его развития по эпигенетическим изменениям в организме, основанных на ДНК-метилировании. Компания продолжает свои исследования в направлении создания тестов на предмет предрасположенности к разным видам онкологии, стремясь «сделать тестирование на ДНК-метилирование в качестве обычной практики в клинической лаборатории». В том же направлении ведут работу и другие компании: Roshe Pharmaceuticals, MethylGene, NimbleGen, Sigma-Aldrich, Epigentek. В 2003 году был запущен проект Human Epigenome Project, в рамках работы над которым учёные смогли расшифровать вариабельные локусы метилирования ДНК на трех хромосомах человека: 6, 20 и 22.

Эпигенетические механизмы, участвующие в регуляции экспрессии генов

На сегодняшний день уже стало понятно, что изучение механизмов «включения-выключения» генов даёт медицине куда больше возможностей для развития, чем генная терапия. Планируется, что в будущем эпигенетика сможет рассказать нам о причинах и процессах развития некоторых заболеваний с «генетическим уклоном» - например, болезни Альцгеймера, Крона, диабета, поможет изучить механизмы, приводящие к образованию онкологических опухолей, развитию психических расстройств и так далее.

19 февраля 2015 года в журнале Nature увидела свет статья «Cell-of-origin chromatin organization shapes the mutational landscape of cancer». Группой учёных было обнаружено, что паттерн мутаций в раковой клетке соотносится со структурой хроматина. Что это означает? Очень многое. Часто онкологи развивают методы лечения конкретных видов опухолей, но плохо идентифицируют границы частных случаев. Если каждому виду онкологической опухоли поставить в соответствие изменённую структуру хроматина, то станет понятно, что та или иная опухоль развилась из конкретного типа клеток, а это полностью революционизирует лечение рака. Так называемые эпигеномные карты помогут с определением причин развития онкологии: опухолевые клетки «живут» с мутациями, распространёнными по всей ДНК клетки.

Исследуя болезнь Альцгеймера, учёные достаточно давно обнаружили некоторые «генетические вариации», связанные с заболеванием. Они были слабо изучены вследствие того, что содержались в части генома, не кодирующей белки. Биолог Манолис Келлис из Массачусетского технологического института, изучая эпигеномные карты головного мозга человека и мыши, пришёл к выводу, что эти «вариации» некоторым образом связаны с иммунной системой. «В общем-то это то, о чем многие в научной среде интуитивно догадывались, - говорит Келлис, - но на самом деле никто не показал этого на должном уровне». Исследования продолжаются.

Несмотря на превеликое множество работ, посвященных эпигенетике, в ней ещё более чем достаточно и чёрных дыр, и белых пятен. Международная организация под названием The International Human Epigenome Consortium ( http://ihec-epigenomes.org/) ставит своей целью предоставление свободного доступа к эпигенетическим материалам человека для развития фундаментальных и прикладных исследований в областях, связанных с эпигенетикой. В планах - отображение более 1000 типов клеток, исследование изменений эпигенома выбранных для испытания людей на протяжении нескольких лет с параллельным изучением влияния внешних факторов. «Эта работа будет занимать нас, по крайней мере, в ближайшие десятилетия. Геном не только трудно читать, сам процесс занимает много времени», - утверждает Манолис Келлис.

Кроме того, на данный момент ведутся серьезные разработки в области альтернативных и эффективных методов лечения психических расстройств. Уже показано, что некоторые лекарственные вещества, защищающие ацетильные группы гистонов, инактивируя ферменты-отщепители ацетильных групп, оказывают сильный антидепрессивный эффект. Фермент гистон-дезацетилаза, катализирующий отщепление, можно найти в клетках разных областей головного мозга, во многих тканях и органах, поэтому-то лекарство из-за неизбирательной активности и оказывает побочное действие. Исследователи изучают возможности создания таких веществ, которые подавляли бы активность только гистон-дезацетилазы в головном мозге, отвечающих за психическое состояние человека («центре вознаграждения»). Но никто не мешает попытаться идентифицировать другие белки, участвующие в эпигенетической модификации хроматина клеток головного мозга, или выявить гены, эпигенетически модифицирующиеся при депрессии (например, связанные с синтезом рецепторов специфических нейромедиаторов или сигнальных белков, которые участвуют в активации нейронов). Такие исследования позволят запустить поиск или синтез лекарств, которые смогут инактивировать эти конкретные гены или их продукты.

И напоследок

«Так всё-таки, как жить сейчас? Вести здоровый образ жизни? Срочно записываться в спортзал и пересматривать свой рацион питания?» - с нетерпением спросите вы. Питер Шпорк в своей книге «Читая между строк ДНК» отвечает на него с долей юмора. Он говорит о том, что резко и навсегда вычёркивать из своей жизни вечера на диване и вредную еду всё-таки не стоит, ведь такая встряска скорее всего приведёт к стрессам, которые также могут отразиться на эпигенетике. Главное, чтобы «вредности» не стали образом жизни или укоренившейся привычкой. Эпигенетика, как маячок в бурном море жизни, показывает нам, что наш организм проходит порой через критические периоды развития, когда эпигены чувствительны к раздражителям из внешней среды. Именно поэтому женщине, ждущей ребёнка, обязательно надо регулярно принимать фолиевую кислоту и оберегать себя от стрессов и негативных ситуаций.

A. and others. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, pp 360-364, 19 February 2015. http:// biochemies. com

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе - иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ , чувствительные к метилированию рестриктазы , идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование . Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Энциклопедичный YouTube

    1 / 5

    Эпигенетика. Рассказывает молекулярный биолог Борис Фёдорович Ванюшин.

    What is epigenetics? - Carlos Guerrero-Bosagna

    Елена Григоренко. Что изучает эпигенетика

    Эпигенетические ярлыки на ДНК

    Гордон - Диалоги: Эпигенетика

    Субтитры

Примеры

Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки . Во время морфогенеза плюрипотентные стволовые клетки формируют различные полипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворённая яйцеклетка - зигота - дифференцируется в различные типы клеток, включая: нейроны , мышечные клетки, эпителий , эндотелий сосудов и др., путём множественных делений. Это достигается активацией одних генов, и, в то же время, ингибированием других с помощью эпигенетических механизмов .

Второй пример может быть продемонстрирован на мышах-полевках . Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью - повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.

Этимология и определения

Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен Конрадом Уоддингтоном (Conrad Hal Waddington ) в 1942 году, как производное от слов «генетика» и аристотелевского слова «эпигенез». Когда Уоддингтон ввёл этот термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном», и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.

Молекулярные основы эпигенетики

Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает первичную структуру ДНК, а изменяет активность определенных генов. Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому .

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Бориса Фёдоровича Ванюшина и Геннадия Дмитриевича Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b - это de novo метилтрансферазы, которые осуществляют формирование профиля метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии.

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование , сумоилирование. Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать своё модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин - это комплекс ДНК с белками, прежде всего, с белками-гистонами . Гистоны формируют нуклеосому , вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов . Хроматин, свободный от нуклеосом, называется открытым хроматином . Ремоделирование хроматина - это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.

Прионы

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA) . МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3"-нетранслируемым участком мРНК.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . В настоящее время разрабатывается эпигенетическая терапия , направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны) . Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене геномным импринтингом , феноменом, при котором аллели гена имеют разный профиль метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера - Вилли . Причиной развития обоих является частичная делеция в регионе 15q . Это связано с наличием геномного импринтинга в данном локусе.

Трансгенеративные эпигенетические эффекты

Маркус Пембри (Marcus Pembrey ) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путём изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.

Наука

Что если ваше решение сегодня съесть еще один пакет чипсов или выкурить еще одну сигарету может повлиять не только на ваше здоровье, но и на здоровье ваших детей? Более того, что если ваш образ жизни влияет на здоровье ваших детей, ваших внуков и правнуков? Как оказалось, от нашего повседневного выбора зависит намного больше, чем мы себе представляли.

Традиционный взгляд на ДНК заключается в том, что она выражает себя через наши гены, которые помогают нам выживать, размножаться, развиваться, а также, что ДНК – это постоянная величина, заложенная природой на протяжении многих тысячелетий. Теперь, однако, представляется, что условия окружающей среды, такие как стресс, питание и окружение оказывают влияние на то, как ведет себя не только наша ДНК, но и ДНК наших детей, даже если они еще только в проекте.

Все это относится к сравнительно новой науке, которая называется эпигенетика. Ниже мы рассмотрим пять самых значимых открытий эпигенетики, а также что они означают для нашего здоровья.

5. То, что ДНК может сделать намного важнее, чем ее структура

ДНК – это важная структура, однако, она не ответственна за все. Подобные надзорные функции принадлежат эпигеному. Как описывал Джон Клауд (John Cloud), эпигеном берет бразды правления в верхней части генома и говорит каждому гену работать или нет посредством эпигенетических маркеров. Это основа эпигенетики, изучение изменений в поведении наших генов, которые могут быть переданы, фактически не изменяя наш генетический код. Потенциально, это означает, что наш организм может обладать биологическими реакциями на условия окружающей среды, которые позитивно или негативно сказываются на нашем здоровье, не меняя при этом ДНК.

К примеру, Клауд предлагает проиллюстрировать эпигенетику, рассмотрев близнецов, которые обладают идентичным генетическим материалом. Почему же тогда близнецы не страдают от одних и тех же заболеваний, таких как, к примеру, астма или психические расстройства? Играет ли в данном случае роль эпигенетика? В настоящее время именно этими вопросами и занята наука. Кроме того, исследователи изучают, существуют ли лекарственные препараты или методы, которые можно использовать для того, чтобы в лучшую сторону изменить генетическое поведение.

4. Когда дело доходит до развития заболевания, эпигенетика задает тон

Хорошо, что можно использовать ДНК в качестве козла отпущения, однако, есть и другие факторы, увеличивающие наши шансы на развитие того или иного заболевания, среди которых: экологические проблемы, плохое питание, социальные взаимодействия и воздействия окружающей среды, которые способствуют эпигенетическим изменениям.

Как отмечает Сара Бальдауф (Sarah Baldauf), специалист по эпигенетике, выражение эпигенетических изменений в более позднем возрасте может быть причиной возрастных заболеваний, таких, как, к примеру, болезнь Альцгеймера. "С возрастом, стареют и наши гены, поэтому они могут просто отключиться, что и приводит к болезни", - говорит она. Что это может означать? Исследователи надеются разработать препараты, которые будут управлять эпигенетическими изменениями и которые защитят нас или остановят болезнь.

Далее она приводит один пример работы исследовательской команды, которая обнаружила эпигенетические изменения у мышей, приведшие к развитию у грызунов волчанки. Однако, им удалось полностью вылечить мышей, создав лекарственный препарат, который вызвал эпигенетические изменения.

3. Эпигенетика тесно связана с развитием рака

Ранее раковые заболевания уже были включены в список потенциальных болезней, связанных с эпигенетическими изменениями. Эта тема заслуживает дальнейшего обсуждения из-за вероятности ее близкой связи с наукой.

Исследователи рассматривают возможность того, что изменения в эпигеноме вызывают рост опухоли. Некоторое время назад эксперты полагали, что рак связан либо с мутациями, из-за которых наши клетки перестают нас защищать либо с потерей этой защиты при делении клеток. Это правда, однако, существует и третья причина. Опухоли могут расти, потому что хорошие клетки с отличной защитой получают эпигенетический сигнал не выполнять свою работу. С помощью лекарственных препаратов и даже меняя образ жизни, мы, возможно, в будущем сможем изменить эпигенетическое поведение, и вернуть эти защитные клетки к работе.

На недавней конференции американского института раковых исследований была рассмотрена связь между эпигенетикой и раком. К примеру, один из специалистов Родерик Дэшвуд (Roderick Dashwood) описывал исследование, которое показало, что с помощью определенных продуктов питания, таких как брокколи, удалось "выключить" работу особых белков, которые развиваются в организме человека вместе с раком и не позволяют клетками умереть естественным путем.

2. Дородовой уход необходим для того, чтобы следить за эпигенетическими изменениями

Что произойдет, если беременную крысу подвергать воздействию инсектицидов и фунгицидов? Повлияет ли это на ее потомство? Безусловно, да. В ходе исследования во время такого воздействия произошли эпигенетические изменения, которые привели к увеличению случаев мужского бесплодия или же способствовали очень слабому производству спермы. Более того, эти эпигенетические изменения сохранились на протяжении следующих четырех (!) поколений. Поэтому дородовой уход является ключом к здоровью наших потомков и будущих поколений.

Таким образом, если дородовой уход важен, есть ли определенный период беременности, во время которого нужен особый контроль? Похоже, что так. Проведенное колумбийским университетом исследование связывает недостаточное питание во время беременности с негативными последствиями для здоровья ребенка на протяжении всей его жизни. Однако, еще более интригующим оказался тот факт, что особенно опасно недоедание в первые 10 недель беременности.

1. Эпигенетика связана не только с экологией, но и социальными взаимодействиями

Когда дело доходит до эпигенетики, подсчет того, сколько раз в день вы обнимаете своего ребенка, обретает совершенно иной смысл. Похоже, что эпигенетические изменения также связаны с социальными и поведенческими взаимодействиями.

Одно из проведенных исследований показало, что от того, как крыса ухаживает за своими детенышами, зависит поведение малышей в будущем и их эпигенетические маркеры. Более того, команда исследователей показала, что они могут восполнить нехватку заботы при помощи специальных лекарственных препаратов, тем самым меняя эпигенетический фон.

Что касается людей, то когда в их жизни происходят стрессовые ситуации, они также накладывают свой отпечаток на то, как ведет себя наш геном. Кроме того, эпигенетические изменения сохраняются даже после того, как гормон стресса покидает наш организм.


Секвенирование ДНК генома человека и геномов многих модельных организмов вызвало в последние несколько лет значительное возбуждение в биомедицинском сообществе и среди обычной публики. Эти генетические "синьки", демонстрирующие общепринятые правила менделевской наследственности, оказываются теперь легко доступными для тщательного анализа, открывая дверь для более глубокого понимания биологии человека и его болезней. Эти знания порождают также новые надежды на новые лечебные стратегии. Тем не менее, многие фундаментальные вопросы остаются без ответа. Например, как осуществляется нормальное развитие, при том что каждая клетка обладает одной и той же генетической информацией и все же следует своим особым путем развития с высокой временной и пространственной точностью? Каким образом клетка решает, когда ей делиться и дифференцироваться, а когда сохранять неизменной клеточную идентичность, реагируя и проявляя себя согласно своей нормальной программе развития? Ошибки, случающиеся в вышеупомянутых процессах, могут вести к возникновению таких болезненных состояний, как рак. Закодированы ли эти ошибки в ошибочных "синьках", которые мы унаследовали от одного или обоих родителей, или же имеются какие-то другие слои регуляторной информации, которые не были правильно считаны и декодированы?

У человека генетическая информация (ДНК) организована в 23 пары хромосом, состоящих из примерно 25ООО генов. Эти хромосомы можно сравнить с библиотеками, содержащими разные наборы книг, которые в совокупности обеспечивают инструкции для развития целого человеческого организма. Нуклеотидная последовательность ДНК нашего генома состоит примерно из (3 х на 10 в степени 9) оснований, сокращенно обозначаемых в этой последовательности четырьмя буквами A, С, G и Т, которые образуют определенные слова (гены), предложения, главы и книги. Однако чем же диктуется, когда именно и в каком порядке эти разные книги нужно читать, остается далеко не ясным. Ответ на этот экстраординарный вызов заключается, вероятно, в том, чтобы выяснить, каким образом клеточные события скоординированы в процессе нормального и ненормального развития.

Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована - примерно в 10ООО раз, - чтобы поместиться в клеточном ядре - том компартменте клетки, в котором хранится наш генетический материал. Накручивание ДНК на "шпульки" из белков, так называемых гистоновых белков , обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок:ДНК и который известен как хроматин . Однако в процессе упаковки ДНК для лучшего соответствия ограниченному пространству задача усложняется - во многом так же, как при расстановке слишком большого числа книг на библиотечных полках: становится все труднее и труднее найти и прочесть книгу по выбору, и, таким образом, становится необходимой система индексирования.

Такое индексирование обеспечивается хроматином как платформой для организации генома. Хроматин не однороден по своей структуре; он выступает в различных формах упаковки - от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин). В основной полимер хроматина могут вводиться изменения путем включения необычных гистоновых белков (известных как варианты гистонов), измененных структур хроматина (известных как ремоделинг хроматина) и добавления химических "флажков", меток к самим гистоновым белкам (известного как ковалентные модификации). Более того, добавление метальной группы непосредственно к цитозиновому основанию (С) в матрице ДНК (известное как метилирование ДНК) может создавать сайты для присоединения белков, чтобы изменить состояние хроматина или повлиять на ковалентную модификацию резидентных гистонов.

Полученные в последнее время данные позволяют предполагать, что некодирующие РНК могут "направлять" переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.

В совокупности эти регуляторные возможности наделяют хроматин неким организующим геномы началом, которое известно как "эпигенетика". В некоторых случаях паттерны эпигенетического индексирования оказываются наследующимися в ходе клеточных делений, обеспечивая тем самым клеточную "память", которая может расширять потенциал наследуемой информации, заключенный в генетическом (ДНК) коде. Таким образом, в узком смысле слова эпигенетику можно определять как изменения в транскрипции генов, обусловленные модуляциями хроматина, которые не являются результатом изменений в нуклеотидной последовательности ДНК.

В этом обзоре представлены основные концепции, связанные с хроматином и эпигенетикой, и обсуждения, каким образом эпигенетический контроль может дать нам ключ для решения некоторых давнишних тайн - таких как клеточная идентичность, опухолевый рост, пластичность стволовых клеток, регенерация и старение. По мере того, как читатели будут "продираться" через последующие главы, мы советуем им обратить внимание на широкий спектр экспериментальных моделей, которые, по- видимому, имеют эпигенетическую (неДНКовую) основу. Выраженное в механистических терминах понимание того, как функционирует эпигенетика, будет, вероятно, иметь важные и далеко идущие последствия для биологии и болезней человека в эту "постгеномную" эру.



Похожие статьи

  • Английский - часы, время

    Всем кто интересуется изучением английского языка, приходилось сталкиваться со странными обозначениями p. m. и a. m , и вообще, везде, где упоминается о времени, почему-то используется всего 12 часовой формат . Наверное, для нас живущих...

  • "Алхимия на бумаге": рецепты

    Doodle Alchemy или Алхимия на бумаге на Андроид — интересная головоломка с красивой графикой и эффектами. Узнайте как играть в эту удивительную игру, а также найдите комбинации элементов для прохождения игры Алхимия на бумаге. Игра...

  • Не запускается Batman: Arkham City (Batman: Аркхем Сити)?

    Если вы столкнулись с тем, что Batman: Arkham City тормозит, вылетает, Batman: Arkham City не запускается, Batman: Arkham City не устанавливается, в Batman: Arkham City не работает управление, нет звука, выскакивают ошибки, в Batman:...

  • Как отучить от игровых автоматов человека Как отучить играть в азартные игры

    Вместе с психотерапевтом московской клиники Rehab Family и специалистом в терапии игромании Романом Герасимовым «Рейтинг Букмекеров» проследил путь игромана в ставках на спорт – от формирования зависимости до обращения к врачу,...

  • Ребусы Занимательные ребусы головоломки загадки

    Игра "Загадки Ребусы Шарады": ответ к разделу "ЗАГАДКИ" Уровень 1 и 2 ● Не мышь, не птица - в лесу резвится, на деревьях живёт и орешки грызёт. ● Три глаза - три приказа, красный - самый опасный. Уровень 3 и 4 ● Две антенны на...

  • Сроки поступления средств на ЯД

    СКОЛЬКО ИДУТ ДЕНЬГИ НА СЧЕТ КАРТЫ СБЕРБАНКА Важные параметры платежных операций – сроки и тарифы зачисления денежных средств. Эти критерии прежде всего зависят от выбранного способа перевода. Какие условия перечисления денег между счетам